
A Brief Tutorial on Live Virtual Machine Migration From a
Security Perspective

Diego Perez-Botero
Princeton University, Princeton, NJ, USA

diegop@princeton.edu

ABSTRACT
Virtualization has gained traction in a wide variety of con-
texts. The rise of Cloud Computing and the wide adoption
of the OpenFlow API in computer networks are just a few
examples of how virtualization has changed the foundations
of computing. In general, the term ”virtualization” refers
to the process of turning a hardware-bound entity into a
software-based component. The end result of such procedure
encapsulates an entity’s logic and is given the name of Vir-
tual Machine (VM). The main advantage of this technique is
that multiple VMs can run on top of a single physical host,
which can make resource utilization much more efficient. Of
particular interest are those VMs with high availability re-
quirements, such as the ones deployed by cloud providers,
given that they generate the need to minimize the downtime
associated with routine operations.

VMs can deal with availability constraints much more grace-
fully than their physical equivalents. While physical hosts
have to be powered down for maintenance, the VMs that
they serve can migrate to execute on other physical nodes.
It is also common to migrate VMs when load balancing is
needed in the physical plane. The process of migrating VMs
without any perceptible downtime is known as Live Virtual
Machine Migration and is the topic of this paper. This non-
trivial problem has been studied extensively and popular hy-
pervisors (e.g. Xen, VMware, OpenVZ) have now put rea-
sonable solutions to practice. After covering the pre-copy
and post-copy approaches to live VM migration, a variety
of design decisions will be discussed along with their pros
and cons. Having set the necessary theoretical background,
a security-focused survey will be carried out, documenting
the state-of-the-art in Live VM Migration exploits and coun-
termeasures.

1. SYSTEM VS PROCESS MIGRATION
The problem of process migration was thoroughly studied
during the 90’s. Unfortunately, the fact that applications
are strongly connected with the OS by way of open sockets,
file descriptors and other resource pointers makes process
migration very difficult. In some cases (e.g. shared mem-
ory between processes), such migration is not even possible
unless processes are partitioned a priori [1].

Migrating an entire OS with its applications is a much more
manageable procedure, especially in the presence of a Vir-
tual Machine Monitor (VMM). VMMs expose a narrow in-
terface to the OS, so the entity to be migrated encapsulates

most of the complexity. That is, the details of what is oc-
curring inside the VM can be ignored during migration.

2. LIVE VM MIGRATION STRATEGIES
In this section, we will consider the most common setting for
Live VM Migration: a clustered server environment. The
three main physical resources that are used under such con-
ditions are memory, network and disk [2]. While memory
can be copied directly from one host to another, local disk
and network interface migration are not trivial.

To be able to preserve open network connections and to
avoid network redirection mechanisms, a VM should retain
its original IP address after migration. If the migration is
within the same LAN, which is the norm in a clustered server
environment, this can be done by generating an unsolicited
ARP reply advertising the new location for the migrated
VM’s IP [2].

Local disk migration should not be needed inside a server
farm. Data centers use network-attached storage (NAS) de-
vices, which can be accessed from anywhere inside the clus-
ter. Thus, secondary storage doesn’t have to be migrated
with the VM. Consequently, in a clustered server en-
vironment, the Live VM Migration problem is re-
duced to finding a way of consistently transferring
VM memory state from one host to another.

2.1 Memory Migration
Memory migration can be divided into three phases [3]:

• Push phase: The source VM continues running while
certain pages are pushed across the network to the
new destination. To ensure consistency, pages modi-
fied during this process must be resent.

• Stop-and-copy phase: The source VM is stopped, pages
are copied across to the destination VM, then the new
VM is started.

• Pull phase: The new VM starts its execution and, if it
accesses a page that has not yet been copied, this page
is faulted in across the network from the source VM.

Most migration strategies select either one or two of the
above phases. While the pre-copy approach combines push
with stop-and-copy, the post-copy approach combines pull
with stop-and-copy.

1



2.2 Pre-Copy
As pointed out by [4], Xen1 uses pre-copy as its live migra-
tion strategy. The pre-copy algorithm proposed by [2] uses
an iterative push phase, followed by a minimal stop-and-
copy. The iterative nature of the algorithm is the result of
what is known as dirty pages: memory pages that have been
modified in the source host since the last page transfer must
be sent again to the destination host. At first, iteration i
will be dealing with less dirty pages than iteration i − 1.
Unfortunately, the available bandwidth and workload char-
acteristics will make it so that some pages will be updated at
a faster rate than the rate at which they can be transferred
to the destination host. At that point, the stop-and-copy
procedure must be executed. A 5-step view of the pre-copy
technique is shown in Figure 1:

Figure 1: pre-copy algorithm. Taken from [2]

The stop-and-copy phase is when the CPU state and any re-
maining inconsistent pages are sent to the new host, leading
to a fully consistent state. Determining the time to stop the
pre-copy phase is non-trivial, since there exists a trade-off
between total migration time and downtime. If it is stopped
too soon, more data must be sent over the network while
both the source and the destination are down, leading to a
larger downtime. Nonetheless, if stopped too late, some time
will be wasted on pages that are written too often and defeat
any pre-copy efforts. As explained by [3], most server work-
loads exhibit a small, but frequently updated set of pages
known as writable working set (WWS) or hot pages, that can
only be transferred during the stop-and-copy stage. Depend-
ing on the workload characteristics, [2] registered downtimes
with the pre-copy technique of only 60 ms and 210 ms with
normal applications, and a worst-case 3.5 second downtime
with an intentionally ”diabolical” workload.

2.2.1 Availability Concerns
The pre-copy algorithm actively scans memory pages and
sends them through the network. As such, CPU resource

1Xen is a very popular Open Source Type-I Hypervisor.
http://www.xen.org

and bandwidth consumption should be monitored to mini-
mize service degradation. A reasonable heuristic is to start
off with low bandwidth usage, transferring the relatively
static memory pages without any perceivable impact on qual-
ity of service. Afterwards, more bandwidth and CPU re-
sources can be allocated to the migration process incremen-
tally to be able to transfer frequently-updated pages. This
would culminate with the maximum throughput (high per-
formance impact) for a short period of time to reduce the hot
pages to a minimum before the stop-and-copy phase begins.

2.3 Post-Copy
Post-copy migration defers the memory transfer phase un-
til after the VM’s CPU state has already been transferred
to the target and resumed there. As opposed to pre-copy,
where the source host handles client requests during the mi-
gration process, post-copy delegates service execution to the
destination host. In the most basic form, post-copy first sus-
pends the migrating VM at the source node, copies minimal
processor state to the target node, resumes the virtual ma-
chine at the target node, and begins fetching memory pages
from the source over the network. Variants of post-copy
arise in terms of the way pages are fetched. The main bene-
fit of this approach is that each memory page is transferred
at most once, thus avoiding the duplicate transmission over-
head of pre-copy [5]. Figure 2 contrasts the pre-copy and
the post-copy procedure timelines:

Figure 2: The timeline of (a)pre-copy vs (b)post-copy
migration. Taken from [5]

There are three main ways of handling page fetching in post-
copy schemes [5]:

• Post-Copy via Demand Paging : after the VM resumes
at the target, page faults are serviced by requesting the
referenced page over the network from the source node.
Usually, this results in unacceptable total migration
times and application degradation.

• Post-Copy via Active Pushing : a better way to tackle
residual dependencies if to proactively push the pages
from the source to the target, even as the VM contin-
ues executing at the target machine. Page faults can

2



be serviced with higher priority than the other pages
being pushed.

• Post-Copy via Pre-Paging : this approach extends the
active pushing technique by estimating the spatial lo-
cality of the VM’s memory access pattern in order to
anticipate the occurrence of major page faults. This
way, the transmission window of the pages being pushed
changes in real time with each new page fault to min-
imize application degradation.

2.3.1 Performance Concerns
As shown by [5], hybrid post-copy schemes provide lower
total migration times than pre-copy because the writable
working set issue is eliminated. Unfortunately, downtime is
increased due to the way page faults are handled. Therefore,
this migration strategy might be optimal for environments
in which low network overhead is critical.

3. DIVISION OF RESPONSIBILITIES
When performing Live VM Migration, the operation can be
either VMM-intensive or OS-intensive. Depending on the
decision made, either the OS kernel or the VMM will need
to be modified. Under some circumstances, the developer is
forced to go for one option or the other. For example, OS-
intensive procedures might not be possible if a closed-source
OS is being used, such as Windows 7.

3.1 Managed Migration (VMM-based)
In case of managed migration, the migration is performed
by the daemons running in the management VMs of the
source and the destination. These daemons are responsible
for creating a new VM on the destination machine, and coor-
dinating transfer of live system state over the network. Let
us consider the case in which live migration is being run in
pre-copy mode. In the initial round, all the pages are trans-
ferred and subsequently only those pages that were dirtied
in the previous rounds (as indicated by a dirty bitmap) are
migrated. Xen uses shadow page tables to log dirty pages.
The shadow tables are populated using guest page tables
and reset after each phase of pre-copying. When pre-copy
phase is no longer beneficial, a control message is sent to the
OS to suspend itself in a state suitable for migration on host,
and prepare for resumption on the destination. The dirty
bitmap is scanned for remaining inconsistent memory pages,
and these are transferred to the destination along with the
VM’s check-pointed CPU register state [3].

3.2 Self Migration (OS-Based)
In this design, no modifications are required to the VMM.
The implementation aspects are present within the OS it-
self. The destination machine must run a migration stub
to listen for incoming migration requests, create an appro-
priate empty VM, and receive migrated system state. No
modifications are necessary for a source machine. Let us
consider the case in which live migration is being run in pre-
copy mode. Difficulty arises in transferring a consistent OS
checkpoint, as the OS must continue to run in order to trans-
fer its final state. The solution is to logically checkpoint the
OS on entry into its final two stages of the stop-and-copy
phase. In the pre-final stage, only migration is allowed and
a shadow buffer is updated with the current dirty pages. In

the last stage, contents of the shadow buffer are transferred
to complete the migration [3].

4. VIRTUALIZATION OPTIONS
Virtualization offers many benefits such as live migration, re-
source consolidation, isolation, intrusion prevention/detection,
and checkpointing. However, the overhead of virtualization
cannot always be justified [6]. Regardless, Live Migration is
a very valuable tool. For this reason, considerable research
has been made to reap the benefits of native performance
while still being able to conduct Live Migration.

4.1 Virtualized Environment
Virtualized environments are the common denominator when
it comes to cloud computing, grid computing, and data cen-
ters in general. Native performance is sacrificed in order
to accomplish higher resource utilization by executing var-
ious VMs on each host. Applications in this setting are
usually I/O and network intensive, so virtualized devices
suffice as no specialized operations are required. Most im-
portantly, scalability is easily achievable in virtualized en-
vironments, since instances of the same service can be dy-
namically spawned or eliminated.

Live VM Migration is a very important operation in this
context. It serves as the means through which the virtual-
to-physical host mapping can be altered to achieve load bal-
ancing, energy efficiency, and easy hardware maintenance,
among other administrative tasks.

4.2 No Virtualization
Virtualization technology adds an extra layer of abstraction
with at least three unwanted effects [1]:

• Capability lag : VMMs typically expose ”lowest com-
mon denominator” virtual devices to enhance porta-
bility. This leads to the inability to use the highest
performance features of specialized physical devices,
such as GPU-accelerated video decoding.

• Additional software management : VMMs can intro-
duce additional complexity into software management
(Xen has 200K lines of code in the hypervisor itself
[7]). Virtualization typically does not reduce the total
number of software components running on a system.
Hence, there are more lines of code to manage, more
patches to apply, etc.

• Performance hit : In many applications, virtualized
performance is within an acceptable margin of native
performance and, therefore, the additional layers of
software introduced through virtualization are toler-
ated, but there are also cases where it is not. Kozuch
et al. [1] show how a parallel robotics simulator suffers
a 40% slowdown in a standard VM configuration.

Non-virtualized live migration is very challenging. The ba-
sic idea is the same as described in section 3.2 (Self Migra-
tion), but even migration to another machine with the same
hardware presents new difficulties. Even non-deterministic
aspects of the boot process (e.g. BIOS and/or OS might enu-
merate the devices in a different order or use different IRQs)

3



stand in the way of a successful migration [1]. Kozuch et al.
[1] propose modifications to device drivers and the OS ker-
nel that would make it possible to conduct live self-migration
of non-virtualized OS instances, but the complexity of the
operation makes it seem much more error-prone than its
virtualized counterpart.

In terms of security, the presence of a hypervisor (virtualiza-
tion) increases the possible attack vectors between co-hosted
VMs. The NoHype architecture for cloud computing elim-
inates the hypervisor attack surface by enabling the guest
VMs to run natively on the underlying hardware while main-
taining the ability to run multiple VMs concurrently [7].
Such a feat is made possible by the very unique character-
istics of cloud computing (e.g. pre-allocation of processor
cores and memory resources, use of virtualized I/O devices,
etc.). A live migration mechanism is yet to be proposed for
the NoHype context, so non-virtualized live migration is a
very relevant topic in cloud computing.

4.3 On-Demand Virtualization
Kooburat and Swift [6] show that virtualized and native
execution are not necessarily mutually exclusive. Their on-
demand virtualization proposal attempts to enable switches
between both execution modes on-the-fly. They leverage
the existing hibernation mechanism found in modern Oper-
ating Systems to capture system state and modify the re-
sume kernel to boot up the machine in the other execution
mode. Throughout the conversion, active connections re-
main open. Nonetheless, the downtime of their initial pro-
totype is around 90 seconds, which is unacceptable. If a
live native-to-virtualized conversion technique is developed,
the non-virtualized live migration challenges detailed by [1]
could be avoided.

5. THE SECURITY PROBLEM
Live VM migration includes a lot of state transfer through
the network. During the procedure, protecting the contents
of the VM state files is an important consideration as the
volatile state being transferred may contain highly sensitive
information like passwords and encryption keys. A secure
channel is at times not enough for protection. Mutual vali-
dation among the hosts involved in the migration might even
be a more important issue to be considered [3].

Live VM Migration, like any other network-bound process,
is susceptible to network attacks such as ARP spoofing, DNS
poisoning, and route hijacking. If an attacker somehow man-
ages to place himself between the source and the destina-
tion host, he can then conduct passive (sniffing) or active
(man-in-the-middle) attacks. The fact that the live migra-
tion procedure is usually carried out inside a LAN makes it
even more likely for a network attack to be successful, es-
pecially in situations where different third-parties run their
VMs inside the same network subnet, which is the case in
cloud computing.

6. THREAT MODEL
Our Trusted Computing Base (TCB), shown in Figure 3, is
comprised by the hardware and the hypervisor, excluding
its Live Migration Module. Given that the traditional hy-
pervisor modules are trusted, co-hosted VMs do not pose a

threat for the migration source and destination VMs, tak-
ing into account that the non-migration-related operations
provided by the VMM cannot be used as an attack vector.
Such assumption could be held true by employing a hard-
ened hypervisor, such as HyperSafe [8].

The migration source and destination VMs are untrusted to
each other, so mutual authentication and attestation mech-
anisms must be in place. Since the main usage scenario for
Live VM Migration is in the cloud computing context, we
also assume that other VMs inside the same network seg-
ment are untrusted third parties (potential attackers), but
that the cloud provider is trusted. Last but not least, the
communication medium (LAN) is taken to be untrusted and
prone to interception by malicious parties. As a result, we
focus our attention on remote LAN-bound threats. The mi-
gration module can be directly targeted by a remote party,
but the migration process itself is also exposed to attacks,
given that it takes place over the untrusted network infras-
tructure.

Figure 3: TCB for Live VM Migration. Gray com-
ponents are trusted. White components are outside
the TCB.

7. DETECTING MIGRATION OF VIRTUAL
MACHINES

The first thing to consider in order to evaluate the viability
of possible attacks to Live VM Migration is whether migra-
tion processes can be detected by an attacker located outside
the source and destination hosts. That is, we must find a
way to detect migration processes inside a network without
relying on methods that are restricted to co-hosted VMs
(e.g. the cache-based side-channel from [9]).

Konig and Steinmetz [10] show that the round-trip time
(RTT) of ICMP packets is a promising metric for remotely
detecting VM migration processes. By targeting a VM with
ICMP packets, they can determine when that specific VM
is migrating to another physical machine. As shown in Fig-
ure 4, a generalized increase in round-trip time is observed
throughout the entire migration process. Additionally, a
peak round-trip time at the beginning of the migration pro-
cess is detected, as well as packet loss at the end. The packet
loss at the end of the migration phase is caused by the vir-
tual machine’s CPU being stopped while its registers are
transferred to the target machine [10]. When the VM be-
ing migrated is under high CPU load, the RTT peaks be-
have differently. This might be due to the fact that mem-
ory pages are being updated more frequently, leading to a
greater amount of hot pages, which demands another net-
work traffic pattern (a larger transfer at the end, before the

4



stop-and-copy phase).

Figure 4: Remote detection of live migration process
with low CPU load (left) and high CPU load (right).
Taken from [10]

Konig and Steinmetz’s results confirm the feasibility of con-
ducting network attacks on Live VM Migration operations.
If remote detection of migration initiation was not possible,
ARP flooding and other aggressive network attacks would
need to be activated for long periods of time, resulting in
noticeable performance degradation and easy detection by
Intrusion Detection Systems (IDS).

8. THREATS AND ATTACKS
Live VM Migration threats can be classified into 3 different
classes [11]:

• Control Plane: The communication mechanisms em-
ployed by the VMM to initiate and manage live VM
migrations must be authenticated and resistant to tam-
pering. An attacker may be able to manipulate the
control plane of a VMM to influence live VM migra-
tions and gain control of a guest OS.

• Data Plane: The data plane across which VM mi-
grations occur must be secured and protected against
snooping and tampering of guest OS state. Passive at-
tacks against the data plane may result in leakage of
sensitive information from the guest OS, while active
attacks may result in a complete compromise of the
guest OS.

• Migration Module: The VMM component that imple-
ments migration functionality must be resilient against
attacks. If an attacker is able to subvert the VMM
using vulnerabilities in the migration module, the at-
tacker may gain complete control over both the VMM
and any guest OSes.

8.1 Control Plane
As a part of the control level threat, an attacker can ma-
nipulate the control realm of a VMM to arbitrarily initiate
VM migration and thereby gain control of a guest OS. The
possible loopholes at the control plane include [3]:

• Incoming Migration Control : By initiating unautho-
rized incoming migrations, an attacker may cause guest
VMs to be live migrated to the attacker’s machine and
hence gain full control over guest VMs.

• Outgoing Migration Control : By initiating outgoing
migrations, an attacker may migrate a large number of
guest VMs to a legitimate victim VMM, overloading
it and causing disruptions or a denial of service.

• False Resource Advertising : In an environment where
live migrations are initiated automatically to distribute
load across a large number of servers, an attacker may
be able to falsely advertise available resources via the
control plane. By pretending to have a large num-
ber of spare CPU cycles, the attacker may be able to
influence the control plane to migrate a VM to a com-
promised VMM.

8.2 Data Plane
Melvin Ver [12] shows how packet sniffing of VMware VMo-
tion’s live migration process with widely-available tools like
Wireshark2 can reveal sensitive information in plain text,
even when encryption is enabled. For example, the content
of the files that the VM’s legitimate user is currently viewing
can be captured that way.

Figure 5 shows a logical view of a Man-in-the-Middle (MiTM)
condition. As previously mentioned, there are a variety of
network attacks that can generate the necessary conditions
for an attacker to become part of the data path between the
migration source and destination.

Figure 5: Man-in-the-Middle attack against a Live
VM Migration. Taken from [11]

These attacks are not theoretical. Tools like Xensploit3 work
against Xen and VMware migrations. An example of this
functionality was shown at the Black Hat DC Briefings 20084

by Oberheide et al.:

1. The attacker tries to gain root access to the target
virtual machine via an SSH session before the VM mi-
gration happens:

Figure 6: Failed attempt at gaining root access
through an SSH session

2http://www.wireshark.org
3http://blogs.iss.net/archive/XenSploit.html
4http://www.blackhat.com/html/bh-dc-08/bh-dc-08-
main.html

5



2. The attacker intercepts the Live VM Migration and
uses a hex editor to modify the SSH module’s user
authentication code before sending the memory pages
to the destination host:

Figure 7: Hex editor view of authentication code

3. Attacker tries to gain root access again after VM mi-
gration is completed:

Figure 8: Successful attempt at gaining root access
through an SSH session

As seen in the example above, even if the VM and the VMM
are secure against a particular threat under normal condi-
tions, the migration procedure can render traditional secu-
rity measures useless and compromise an entire system.

8.3 Migration Module
As the migration module provides a network service over
which a VM is transferred, common software vulnerabilities
such as stack, heap, and integer overflows can be exploited
by a remote attacker to subvert the VMM. Given that VM
migration may not commonly be viewed as a publicly ex-
posed service, the code of the migration module may not be
scrutinized as thoroughly as other code [11].

9. SECURITY MECHANISMS
Research in the area of VM migration mainly focused on
optimizing migration performance through live migration.
While the semantics and performance of live VM migration
are well explored, the security aspects have received very lit-
tle attention [13]. The threats as described in the previous
section require that appropriate solutions be applied at ev-
ery level. Mutual authentication of source and destination
hosts is necessary for a secure migration. Also, migration ca-
pabilities and access policies should be introduced to allow
administrators to manage migration policies [3].

9.1 vTPM
Trusted computing is an approach to building systems such
that their integrity can be verified. It is based on the concept
of transitive trust where initial trust in a hardware module
is delegated to other system components [13]. The industry-
standard trusted hardware module is the Trusted Platform
Module (TPM). The full TPM specification by the TCG
consortium can be found online5.

5http://www.trustedcomputinggroup.org

Berger et al. [14] identify the requirements for a virtual
TPM (vTPM) and propose a vTPM design that supports
running vTPMs in memory or on a cryptoprocessor. This
architecture has been implemented on the Xen hypervisor.
Central to this architecture is a privileged VM (Dom0 in the
case of Xen) dedicated to running vTPMs. This VM has
access to the hardware TPM and coordinates all requests to
it. This VM also runs a vTPM manager that manages all
the communication between a VM and its vTPM. VMs can
optionally be configured to use vTPMs. On starting a VM
that is configured to have a vTPM, a corresponding vTPM
instance is started as a user-space process in the privileged
VM [13].

Figure 9 shows the vTPM architecture proposed by [14].
Each vTPM instance is assigned a unique 4-byte identifier
that never leaves the privileged VM. This unique number is
mapped to a unique interrupt (number) that is assigned to
the VM. The VM uses this interrupt to communicate with
its vTPM. The vTPM-to-interrupt id mapping is stored in
the XenStore6 in the case of the Xen hypervisor along with
the VM-to-vTPM instance mapping. On receiving a vTPM
request, the backend driver prepends the instance number
to the request using the mapping table. Communication is
then managed using a split device driver model. The front
end driver resides inside the VM and the back end driver
in the privileged VM. To aid with the split device driver
model, a special feature in Xen called the xen-bus is em-
ployed. The xen-bus enables a VM to map a portion of its
memory as shared and allow the privileged VM to access it.
Since communication happens using shared memory, unau-
thorized access to vTPMs by co-hosted VMs is not possible
[13].

Figure 9: vTPM Architecture. Taken from [14]

9.2 Secure VM-vTPM Migration
The extension of trusted computing to virtualized systems
using vTPMs allows applications in the VM to use the vTPM
for secure storage and to report platform integrity. In order
to ensure the correct operation of applications after migra-
tion, the vTPM must be migrated alongside the VM. Secure
VM-vTPM migration is the name given to such operation.

6XenStore is an information storage space shared between
domains.

6



Proposals for vTPM designs have been accompanied by pro-
posals for vTPM migration [13].

9.2.1 Berger et al.’s Proposed Protocol
In [14], Berger et al. assume that the destination is trustwor-
thy and propose the protocol shown in Figure 10 for migra-
tion between identical platforms. They state that it can
be used alongside live VM migration. A migration-
controlling process initiates the transfer by creating a new
vTPM instance at the destination. Then, it creates a nonce
and transfers it to the source in encrypted form. The key
used for encryption is not clear. At the source, this nonce
is used to lock the vTPM to prevent further changes to
it. The vTPM is then encrypted using a newly generated
symmetric key, which is in turn encrypted using the virtual
Storage Root Key (vSRK) of the vTPM’s parent instance.
The encrypted state information includes keys, counters, any
permanent flags, authorization and transport sessions, and
data. A hash of each of the mentioned parts is added to an
internal migration digest. The vTPM is deleted from the
source and the encrypted state is transferred to the destina-
tion host along with the migration digest. The authors state
that the vSRK of the parent vTPM instance is transferred to
the destination using mechanisms applicable to migratable
TPM storage keys7. At the destination, the received binary
object is decrypted to extract the vTPM state. The digest is
verified and, if no violations are detected, the vTPM is un-
locked using the nonce and restarted. Since the vTPM keys
are assumed to be independent from the hardware TPM
keys, no key regeneration occurs.

Figure 10: vTPM Migration as proposed by [14]

9.2.2 Masti et al.’s Proposed Protocol
Figure 11 shows a high-level view of Masti et al.’s secure
VM-vTPM Migration protocol. The protocol proceeds in
four phases. Initially, the source and destination mutually
authenticate each other and agree upon confidentiality and
integrity preserving cryptographic mechanisms for protect-
ing the rest of the transfer process. Next, the source sends
7Refer to the TPM specification
(http://www.trustedcomputinggroup.org).

an attestation request to the destination to ensure that the
VM is migrated to a secure platform. Having ensured the
authenticity and integrity of the destination platform, the
source then locks the VM and vTPM and transfers them se-
curely using the previously agreed upon cryptographic prim-
itives. Then, the destination checks the integrity of the re-
ceived VM and its vTPM. If no violations are detected, the
destination imports the VM-vTPM pair (which is implemen-
tation specific) and sends an acknowledgment to the source
on success. Finally, in the last phase, the source deletes the
migrated VM and vTPM to prevent duplication and informs
the destination that the migration is complete. The desti-
nation then resumes the newly received VM and its vTPM.
The various phases of the protocol can be linked to a sin-
gle session explicitly (using a session identifier) or implicitly
(by ensuring that each phase depends on any of the previous
phases) [13].

The outlined protocol design assumes that the source and
the migrating VM are trusted by the destination. This is
reasonable in a setting where dynamic platform state mea-
surement occurs ensuring that any malicious state changes
to the source platform and the VM are detected and han-
dled. Ideally, after the entire migration, the migrated VM
should be able to report its new configuration to the destina-
tion on demand. This is meaningful only in a context where
dynamic state measurements are enabled because otherwise,
the VM could just replay its state before the migration [13].

Figure 11: High-Level Outline of vTPM Migration
as proposed by [13]

9.3 Secure Protocols and Live Migration
The semantics of VM migration are important because any
changes to the VM should be synchronized with the vTPM.
For the migration of a powered off VM or a suspended VM,
only a secure transfer protocol is required. Live migration is
more complex due to the need to synchronize VM changes
with the vTPM, which makes the relative timing of vTPM
and VM resumption at the destination important. Since
some live migration techniques allow the VM to be started
on the destination before it is stopped at the source, en-
suring consistency between VM state and its vTPM is very
difficult. Also, secure migration may not start the VM at the
destination immediately after the transfer. This complicates
the usage of live VM migration with vTPMs.

A secure Live VM Migration protocol with the security guar-
antees provided by the protocols covered in this section (au-

7



thentication, confidentiality, replay resistance, non-repudiation,
atomicity, integrity, etc.) is yet to be seen in practice. While
challenging, such end result does not seem impossible to at-
tain, as pointed out by Berger et al [14].

10. CONCLUSIONS AND FUTURE WORK
Secure Live VM Migration has not received the amount of
attention that it deserves. There is a clear trend towards
delegating computation to the Cloud and, at the same time,
Live VM Migration is becoming an everyday operation inside
clustered server environments. Considering that security is
defined by the ”lowest common denominator”, the existence
of vulnerabilities in current migration mechanisms nullifies
strong security guarantees provided by secure hardware and
hypervisors (or lack thereof).

There is much ground for improvement when it comes to
securing the two Live VM Migration network-related planes
(control and data). A cloud computing context with the
Trusted Computing Base (TCB) described in this paper
could benefit from strategies used in other contexts. For
example, VoIP and other next-generation multimedia ser-
vices use a three-level security stack (signaling, key exchange
and media) that could be ported to Live VM Migration to
address network attacks. Schemes detailed in [15], such as
S/MIME+MIKEY for secure signaling and key exchange,
can be coupled with AES-encrypted live migration data to
achieve confidentiality and integrity. In addition, the fact
that the cloud provider is part of the TCB can be leveraged
to deploy PKI-based mutual authentication protocols.

Secure Live VM-vTPM Migration and Non-Virtualized Live
Migration are also interesting research topics. While the for-
mer would aid at hardening secure hypervisor architectures
(e.g. HyperSafe [8]), the latter would help in eliminating the
need for a hypervisor in the first place (e.g. NoHype [16]).

11. REFERENCES
[1] M. A. Kozuch, M. Kaminsky, and M. P. Ryan,

“Migration without virtualization,” in Proceedings of
the 12th conference on Hot topics in operating
systems, HotOS’09, (Berkeley, CA, USA), pp. 10–10,
USENIX Association, 2009.

[2] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield, “Live migration
of virtual machines,” in Proceedings of the 2nd
conference on Symposium pr & Implementation -
Volume 2, NSDI’05, (Berkeley, CA, USA),
pp. 273–286, USENIX Association, 2005.

[3] S. Venkatesha, S. Sadhu, S. Kintali, and S. Barbara,
“Survey of virtual machine migration techniques,”
Memory, 2009.

[4] P. S. Pisa, N. C. Fernandes, H. E. T. Carvalho,
M. D. D. Moreira, M. E. M. Campista, L. H. M. K.
Costa, and O. C. M. B. Duarte, “Openflow and
xen-based virtual network migration.,” in WCITD/NF
(A. Pont, G. Pujolle, and S. V. Raghavan, eds.),
vol. 327 of IFIP International Federation for
Information Processing, pp. 170–181, Springer, 2010.

[5] M. R. Hines and K. Gopalan, “Post-copy based live
virtual machine migration using adaptive pre-paging
and dynamic self-ballooning,” Proceedings of the 2009

ACM SIGPLANSIGOPS international conference on
Virtual execution environments VEE 09, p. 51, 2009.

[6] T. Kooburat and M. Swift, “The best of both worlds
with on-demand virtualization,” in Proceedings of the
13th USENIX conference on Hot topics in operating
systems, HotOS’13, (Berkeley, CA, USA), pp. 4–4,
USENIX Association, 2011.

[7] E. Keller, J. Szefer, J. Rexford, and R. B. Lee,
“Eliminating the Hypervisor Attack Surface for a
More Secure Cloud,” in ACM Conference on
Computer and Communications Security, Oct. 2011.

[8] Z. Wang and X. Jiang, “Hypersafe: A lightweight
approach to provide lifetime hypervisor control-flow
integrity,” in In Proceedings of the 31st IEEE
Symposium on Security and Privacy, 2010.

[9] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage,
“Hey, you, get off of my cloud: exploring information
leakage in third-party compute clouds,” in Proceedings
of the 16th ACM conference on Computer and
communications security, CCS ’09, (New York, NY,
USA), pp. 199–212, ACM, 2009.

[10] A. König and R. Steinmetz, “Detecting migration of
virtual machines,” in Proceedings of the 10th Würzburg
Workshop on IP: Joint ITG, ITC, and Euro-NF
Workshop V̈isions of Future Generation

Networks(̈EuroView2011),
Julius-Maximilians-Universität Würzburg, Lehrstuhl
für Informatik III, Aug 2011.

[11] J. Oberheide, E. Cooke, and F. Jahanian, “Empirical
exploitation of live virtual machine migration,”
Electrical Engineering, no. Vmm, 2008.

[12] M. Ver, “Dynamic load balancing based on live
migration of virtual machines: Security threats and
effects,” 2011.

[13] R. Jayaram Masti, “On the security of virtual machine
migration and related topics,” 2010.

[14] S. Berger, R. Cáceres, K. A. Goldman, R. Perez,
R. Sailer, and L. Doorn, “vtpm: Virtualizing the
trusted platform module,” in In USENIX Security,
pp. 305–320, 2006.

[15] D. Perez-Botero and Y. Donoso, “Voip eavesdropping:
A comprehensive evaluation of cryptographic
countermeasures,” in Networking and Distributed
Computing (ICNDC), 2011 Second International
Conference on, pp. 192 –196, sept. 2011.

[16] E. Keller, J. Szefer, J. Rexford, and R. B. Lee,
“Nohype: virtualized cloud infrastructure without the
virtualization,” SIGARCH Comput. Archit. News,
vol. 38, pp. 350–361, June 2010.

8


